
Page 1

Copyright 2005
William L. Honig

Software Engineering

Comp 330 – Software
Engineering

Dr. William L. Honig

Associate Professor

Department of Computer Science

Copyright 2005
William L. Honig

Software Engineering

Software
Art Software

Science
Software
Process

1960 1990

Evolution of Software
Creation

Copyright 2005
William L. Honig

Software Engineering

REAL
WORLD

SOFTWARE

Objective
 Introduce students to process-

based software development

 Experience the dynamics of team

software development

Approach
 Learn activities of software engineering

 Work as a team for full semester

 Experience full life cycle(s)

 Develop single project for full semester

Requirements

Strategy

Implementation

Design Status Reports

Post Mortem

Testing

Planning

COMP 330
Software Engineering

Page 2

Copyright 2005
William L. Honig

Software Engineering

• The economies of ALL developed nations are
dependent on software

• More and more systems are software controlled

• Software engineering is concerned with theories,
methods and tools for professional software
development

• Software engineering expenditure represents a
significant fraction of GNP in all developed
countries

Software engineering

Copyright 2005
William L. Honig

Software Engineering

• Software costs often dominate system
costs. The costs of software on a PC are
often greater than the hardware cost

• Software costs more to maintain than it
does to develop. For systems with a long
life, maintenance costs may be several
times development costs

• Software engineering is concerned with
cost-effective software development

Software costs

Copyright 2005
William L. Honig

Software Engineering

What are some words that come to mind?







When you use a piece of software,
what do you want?

When you use a piece of software,
what do you want?

What is Software
Engineering ?

Page 3

Copyright 2005
William L. Honig

Software Engineering

What is the difference between
software engineering and computer

science?

• Computer science is concerned with
theory and fundamentals; software
engineering is concerned with the
practicalities of developing and delivering
useful software

• Computer science theories are currently
insufficient to act as a complete
underpinning for software engineering

Copyright 2005
William L. Honig

Software Engineering

About Me…

• 33 years experience telecommunications

– Product development, R&D

– Software, Hardware, Systems, Marketing

• Accomplishments

– Implemented telephone switches, packet networks,
satellite systems, mobile phone infrastructure

– Managed R&D organizations of 200+ people

– Worked on two grand failures

• Lived around the country and world

• Hired over 200 new college graduates

Copyright 2005
William L. Honig

Software Engineering

What is a software process?

• A set of activities whose goal is the development
or evolution of software

• Generic activities in all software processes are:

– Specification - what the system should do and its
development constraints

– Development - production of the software system

– Validation - checking that the software is what the
customer wants

– Evolution - changing the software in response to
changing demands

Page 4

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 10

Objectives of the Class

 Appreciate Software Engineering:
 Build complex software systems in the context of frequent change

 Understand how to
 produce a high quality software system within time

 while dealing with complexity and change

 Acquire technical knowledge (main emphasis)

 Acquire managerial knowledge

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 11

 Understand the Software Lifecycle
 Process vs Product

 Learn about different software lifecycles

 Greenfield Engineering, Interface Engineering, Reengineering

Acquire Managerial Knowledge

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 12

Can you develop this?

Page 5

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 13

Requirements

Software

Limitations of Non-engineered Software

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 14

What is this?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 15

1. Abstraction

 Inherent human limitation to deal with complexity
 The 7 +- 2 phenomena

 Chunking: Group collection of objects

 Ignore unessential details: => Models

Page 6

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 16

Software Production has a Poor Track Record
Example: Space Shuttle Software

 Cost: $10 Billion, millions of dollars more than planned

 Time: 3 years late

 Quality: First launch of Columbia was cancelled because of a
synchronization problem with the Shuttle's 5 onboard
computers.
 Error was traced back to a change made 2 years earlier when a

programmer changed a delay factor in an interrupt handler from 50
to 80 milliseconds.

 The likelihood of the error was small enough, that the error caused
no harm during thousands of hours of testing.

 Substantial errors still exist.
 Astronauts are supplied with a book of known software problems

"Program Notes and Waivers".

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 17 20

Software Engineering: Definition

Software Engineering is a collection of techniques,

methodologies and tools that help

with the production of

 a high quality software system

 with a given budget

 before a given deadline

while change occurs.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 18

Scientist vs Engineer

 Computer Scientist
 Proves theorems about algorithms, designs languages, defines

knowledge representation schemes

 Has infinite time…

 Engineer
 Develops a solution for an application-specific problem for a client

 Uses computers & languages, tools, techniques and methods

 Software Engineer
 Works in multiple application domains

 Has only 3 months...

 …while changes occurs in requirements and available technology

Page 7

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 19

Factors affecting the quality of a software system

 Complexity:
 The system is so complex that no single programmer can understand it

anymore

 The introduction of one bug fix causes another bug

 Change:
 The “Entropy” of a software system increases with each change: Each

implemented change erodes the structure of the system which makes the
next change even more expensive (“Second Law of Software
Dynamics”).

 As time goes on, the cost to implement a change will be too high, and
the system will then be unable to support its intended task. This is true
of all systems, independent of their application domain or technological
base.

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 20

Why are software systems so complex?

 The problem domain is difficult

 The development process is very difficult to manage

 Software offers extreme flexibility

 Software is a discrete system
 Continuous systems have no hidden surprises (Parnas)

 Discrete systems have!

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 21

Software Lifecycle Activities

Subsystems

Structured By

class...
class...
class...

Source
Code

Implemented
By

Solution
Domain
Objects

Realized By

System
Design

Object
Design

Implemen-
tation

Testing

Application
Domain
Objects

Expressed in
Terms Of

Test
Cases

?

Verified
By

class....?

Requirements
Elicitation

Use Case
Model

Analysis

...and their models

Page 8

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 22

Software Lifecycle Definition

 Software lifecycle:
 Set of activities and their relationships to each other to support the

development of a software system

 Typical Lifecycle questions:
 Which activities should I select for the software project?

 What are the dependencies between activities?

 How should I schedule the activities?

Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 23

Summary

 Software engineering is a problem solving activity
 Developing quality software for a complex problem within a limited

time while things are changing

 There are many ways to deal with complexity
 Modeling, decomposition, abstraction, hierarchy

 Issue models: Show the negotiation aspects

 System models: Show the technical aspects

 Task models: Show the project management aspects

 Use Patterns: Reduce complexity even further

 Many ways to do deal with change
 Tailor the software lifecycle to deal with changing project conditions

 Use a nonlinear software lifecycle to deal with changing
requirements or changing technology

 Provide configuration management to deal with changing entities

Copyright 2005
William L. Honig

Software Engineering

One Team Role NO
ONE Has

• It will not
be
possible
to rely on
others to
do your
work!

Page 9

Copyright 2005
William L. Honig

Software Engineering

What are some things you remember feeling in the
meeting?







Think about the time you team met;
What are some feelings you had?

Think about the time you team met;
What are some feelings you had?

What is it like working
with your team?

Copyright 2005
William L. Honig

Software Engineering

Team Building –
Also Part of the Job

• Some “Natural” Team Building Activities
– Assign, discuss, agree on team roles

– Confirm schedules, planned meetings

– Agree on attendance requirements

• Also some “Special” Team Building Activities
– Not specifically job related

– Take time AWAY from job to be done

– Goal: Improve team work and team understanding

– Pay attention to TEAM before PROBLEMS arise

Most Critical at Start of Team

Speed up the Ability of the Team to Work
Together

Copyright 2005
William L. Honig

Software Engineering

Team Building –
A Simple Team Building Activity

• Before team meeting, each member write down the answer to these
three questions:

1. What is the last book (not a textbook) I read?

Write down author and title

2. Name of some unusual place I have visited?

Write down the name and location of the place

3. Something about my family?

Write down something about your family members,
family activities, etc.

• At first team meeting
– Put all papers in the middle of table

– Someone picks a paper and reads it out loud

– All team members try to guess who it is (take 2 minutes max)

– Person who’s paper is being read tells group when it guesses right or when time is up

