LOYOLA
- [N[VERSITY
&N CHICAGO

Systems Analysis and Design
with
UML Class Diagrams

Dr. William L. Honig

Associate Professor
Department of Computer Science

_ _ Extended and Adapted from Robert V. Stumpf, Lavette
Introduction to UML Class Diagrams C. Teague, Object-Oriented Systems Analysis and
William L. Honig, Ph.D. Spring 2015 Design With UML, Pearson/Prentice Hall 2005

LOYOLA
S UNIVERSITY

Ove rVieW ;j{'uurm:u
UML Domain Models (Concepts)
— Aka Objects and Methods or Messages
— Abstract or Logical Components
— Aot Instances

UML Class Diagrams
— Aka Class names, attributes, methods
— With types, parameters,...

Set the stage for programming
— System level operation is clear
— Internal, physical, implementation remains

Introduction to UML Class Diagrams 2
William L. Honig, Ph.D.

Overview

There is one domain model for the
system — a static model showing the
conceptual scope of the entire
system. Its components are
concepts, their attributes, and
associations between concepts. It
also shows hierarchies of concepts.

It is helpful to construct the domain
model one use case at atime in order
to understand which concepts,
attributes, and associations are
relevant to each use case.

© 2005 Prentice Hall 1-3

Object-Oriented
Systems Analysis

Produce a domain model showing the
concepts, attributes, and associations
In the problem domain of the system.

© 2005 Prentice Hall 1-4

Domain Model

FIGURE 5.1
Department Course
departmentCode 1 Offers eoiirsElimber
name
1
1
Schedules)
Describes
*
Student Section
studentldentifier " Enrolled in
name sectionNumber
address

© 2005 Prentice Hall

1-5

Concepts, Attributes,
and Associations

« A concept is an abstraction of a thing,

a person, or an idea. It is represented
by arectangle.

An attribute Is a characteristic of a
concept which may have a value.
Attribute names appear in the lower
compartment of the concept rectangle.

An association is a significant connection
between concepts. It is represented by a
line connecting a pair of concepts.

© 2005 Prentice Hall 1-6

Finding Concepts

1. Look for nouns or noun phrases
describing the problem domain.

Include a concept in the domain model
when the system needs to store data
about the concept to respond to a
future event.

© 2005 Prentice Hall 1-7

FIGURE 5.4

Concepts

Course

Department

Seat

Section

Student

Professor

© 2005 Prentice Hall

1-8

Add Attributes

Attributes describe concepts.

Concept Student Professor Section
Attributes: studentldentifier professoridentifier number

studentName professorName meetingTime

studentAddress professorAddress meetingPlace

major title maximum
classLevel NumberOf
Students

© 2005 Prentice Hall 1-9

Attributes

(continued)
FIGURE 5.5
Department Course Seat
d-paiiiientCode courseNumber type
name
Student Section

studentldentifier
name

address

major

classLevel

© 2005 Prentice Hall

sectionNumber
meetingTime
meetingPlace

maximumNumberOfStudents

1-10

Associations

(between concepts)

FIGURE 5.7

Student Section
studentldentifier | sectionNumber
name l Enrolledin 0. | meetingTime
address meetingPlace
major maximumNumberOfStudents
classLevel

© 2005 Prentice Hall 1-11

Associations

(continued)

Always model associations explicitly;
never use an attribute to imply an
association.

© 2005 Prentice Hall 1-12

Reflexive Associations

A concept may be associated with itself.

FIGURE 5.12

Prerequisite For
0.

0.*

Course

A course is a prerequisite for zero or more other courses.
A course has as prerequisites zero or more other courses.

© 2005 Prentice Hall 1-13

Multiplicity of Associations

The multiplicity of an association is the
number of instances of a concept
which can be associated with one
Instance of another concept.

FIGURE 5.9
Student it
studentldentifier _
name " Enrolled In . sectlc_qumber
address meetingTime

meetingPlace

major maximumNumberOfStudents

classLevel

© 2005 Prentice Hall 1-14

Multiplicity of Associations

(continued)

Each end of an association is labeled
with the minimum and maximum
values of its multiplicity.

0..1
1..1
. *signifies unlimited (more or many)
*alone means zero or more

© 2005 Prentice Hall 1-15

Associations and Generalization-
SEeciaIization Hierarchies

ldentifying and adding associations
and generalization-specialization
hierarchies to the domain model
IS Step 5c of the process for
object-oriented systems analysis.

© 2005 Prentice Hall 1-16

Generalization-Specialization
Hierarchies

A generalization-specialization hierarchy
classifies a type of concept into its
subtypes.

Every instance of a subtype must also
be an instance of its supertype.

Subtypes have the same set of attributes
as their supertype. These attributes
are not duplicated in the domain
model.

© 2005 Prentice Hall 1-17

Generalization-Specialization
Hierarchies (continued)

FIGURE 5.19

Student

studentldentifier
name

address

major

--------- Supertype \

Undergraduate Student

Graduate Student

classLevel

-——- Subtype \

© 2005 Prentice Hall

1-18

Postconditions for

System Operation Contracts

e What

Instances of concepts must be

created or deleted?

« What attributes have their values
modified? To what new values?

« Which instances of associations must
be added or deleted?

Use the past tense and the passive voice.

© 2005 Prentice Hall

1-19

Type:
Exceptions:

Output:
Preconditions:
Postconditions:

© 2005 Prentice Hall

System Operation Contracts

(continued)

FIGURE 5.27

Contract

Name: requestSection
(departmentCode,
courseNumber,
sectionNumber)

Responsibilities: Enroll the Student in the Section.

System

If the combination of department code, course number and
section number is not valid, indicate that it was an error.

If no seats are available, inform the Student.

Department and Section are known to the system.

A new instance of the Enrolled In association was created,
linking the Student and the Section.

1-20

Design Overview

Design is a critical intermediate step
between a statement of requirements
and the construction of a solution.

It produces a description of the solution —
not the solution itself. This description
Is sufficiently complete and accurate to
assure that the solution can be
constructed.

Design models allow the behavior of
proposed solutions to be evaluated
and compared.

© 2005 Prentice Hall 1-21

Responsibilities

The principal task of object-oriented
program design is to assign
responsibilities to classes.

A responsibility is an obligation of an
object to other objects.

© 2005 Prentice Hall 1-22

Responsibilities

(continued)

An object may be responsible for knowing:

 What it knows —its attributes

« Who it knows —the objects associated
with it

 What it knows how to do —the operations
It can perform

© 2005 Prentice Hall 1-23

LOYOLA
o INIVERSITY
éf_{ HICAGO
B

OO0 Review

» Class and Encapsulation (system parts)
— Attributes (Private Information)
— Methods (Public Behavior)
— Inheritance
— Polymorphism
* Interactions (doing things)
 Messages

« Parameters
* “access” to or visibility of other objects

e |nstances are NOT classes

Computer Systems Analysis and Design 24
Copyright 2005 William L. Honig, Ph.D; version 2 May 2009.

Types of Relationships . L0008
- Inheritance

EY: cicaco
Derived Class

Derived Class Object
— “is-a” Base Class Object
— “is-a-kind-of”
— “must-be-a”

« Remember the
Substitution Rule

— Any object of the
‘can-be-a” derived class must be
(but need not be) Usable in place of a
base-class object.

Data

Operations

Base Class

Data

Operations

Computer Systems Analysis and Design 25
Copyright 2005 William L. Honig, Ph.D; version 2 May 2009.

Fundamental Concepts —

Corrections Added

Messages (continued) WLHonig

Visibility: For an object (the client) to
send a message to another object
(the server), the receiving object
must be visible to the sending object.
(That is, it must know the server’s

FIGURE 8.4
verifyStudentldentifier (studentldentifier)
registrationSystem: — > student:
RegistrationSystem T Student

inGoodStanding()

NEVER ask someone to confirm their own identity
© 2005 Prentice Hall

1-26

Overview

(continued)

The interaction diagrams are developed
on the basis of system operation
contracts produced during analysis.

This overall approach is called
“design by contract.”

© 2005 Prentice Hall 1-27

Design Overview

Design by contract assumes a
commitment
to a contract on the part of the
object which receilves a message.

The preconditions and postconditions
of the system operation contracts
drive the program design.

© 2005 Prentice Hall 1-28

Design Overview

(continued)

In developing the interaction diagram
for each system operation, we must
assure that the operation:

« first checks whether every
precondition of the contract
IS true, and then

« makes every postcondition
of the contract come true.

© 2005 Prentice Hall 1-29

Patterns for
Object-Oriented Program Design

A pattern is a named statement of a
design problem together with its
solution and guidance for applying
the pattern. Patterns include:

 Facade
e Creator
 Expert

 Singleton

© 2005 Prentice Hall 1-30

The Facade Pattern

Problem: Who should be responsible for
handling a system operation
message from an actor?

Solution: Assign this responsibility to an
object representing the system
as a whole.

© 2005 Prentice Hall 1-31

The Creator Pattern

Problem: Who should be responsible for
requesting the creation of a new
object, I. e.,
who sends the create message
to the appropriate class?

Solution: Assign this responsibility to a
class which is In some way
closely involved with the class.
(See Figure 8.4 In text for detalls.)

© 2005 Prentice Hall 1-32

The Expert Pattern

Problem: What is the most basic
principle for assigning
responsibilities to objects?

Solution: Assign the responsibility
to the class which has the
Information necessary to
fulfill it.

© 2005 Prentice Hall 1-33

Interaction Diagrams

An interaction diagram de
messages between obj

nicts the
ects or

classes in a program.

collaborations between objects.

t shows

The UML includes two types of

Interaction diagrams —

collaboration diagrams

and sequence diagram

© 2005 Prentice Hall

S.

1-34

Sequence Diagrams

A sequence diagram shows interactions
In a fence format.

The messages appear from top to bottom
In the sequence in which they occur.

© 2005 Prentice Hall 1-35

FIGURE 8.6

Department

(continued)

Sequence Diagrams

I I
| enterDepartmentClassSchedule

I (departmentCode, term, year) J'_

© 2005 Prentice Hall

registrationSystem: department: departmentClassSchedule:
RegistrationSystem Department DepartmentClassSchedule

T T

I

I

I

I

verifyDepartmentCode
(departmentCode) |

<!

makeDepartmentClassSchedule (term, year)

)hJ.

create (term, year)

<

associateDepartmentClassSchedule
(departmentClassSchedule)

1-36

Design Class Diagrams

(continued)

FIGURE 8.7

Registration System

enterStudentldentifier ()

- requestSection ()

entifier | endSecti q 0
enterDepartmentClassSchedule ()
enterSection ()
endSectionEntries ()
verifyStudentidentifier ()
verifyDepartmentCode ()

d

o.

departmentCode

1

Department

departmentCode
name

professorldentifier ——

makeDepartmentClassSchedule ()
associateDepartmentClassSchedule ()
enroll ()

makeSection ()

verifyCourseNumber ()
verifyProfessor ()

verifySection ()

b

epartment Cl
S

term
year *

create ()
makeSection () Course
associateSection ()
enroll () c_ourseNumber
verify Section () title
units

*

1

Section 1

= ectic b Professor

studentldentifier meetingTime

’ name $0 tingPlace professorldentifier
address maximumNumberOfSeats name

a
| & associateProfessor ()

¢ } d inGoodStanding () associateStudent ()
associateSection (section) enroll ()

© 2005 Prentice Hall ey 1-37

Student

Designh Sequence Diagrams

System sequence diagrams show only
messages between the system and
actors.

Design sequence diagrams show all the
messages between objects inside the
system.

© 2005 Prentice Hall 1-38

Learning Objectives

« Explain fundamental object-oriented
concepts.

 Understand what patterns are and how
they are used.

 Learn how to assign responsibilities to
classes using the Facade, Creator, and
Expert patterns.

© 2005 Prentice Hall 1-39

UML Class Diagram Checklist s iy eisirs
Footsteps for the Programmer

e
FEN CHICAGO

R i

All needed classes defined
— Clear and accurate names

Major Associations identified

— Good names, show in one or two directions
— With clear cardinality

Full set of attributes, with good names
— With complete type definition

Full set of methods
— With complete signature

Introduction to UML Class Diagrams 40
William L. Honig, Ph.D.

